Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pharmaceutics ; 13(11)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512542

ABSTRACT

Ceftriaxone has been a part of therapeutic regime for combating some of the most aggressive bacterial infections in the last few decades. However, increasing bacterial resistance towards ceftriaxone and other third generation cephalosporin antibiotics has raised serious clinical concerns especially due to their misuse in the COVID-19 era. Advancement in nanotechnology has converted nano-therapeutic vision into a plausible reality with better targeting and reduced drug consumption. Thus, in the present study, gold nanoparticles (GNPs) were synthesized by using ceftriaxone antibiotic that acts as a reducing as well as capping agent. Ceftriaxone-loaded GNPs (CGNPs) were initially characterized by UV-visible spectroscopy, DLS, Zeta potential, Electron microscopy and FT-IR. However, a TEM micrograph showed a uniform size of 21 ± 1 nm for the synthesized CGNPs. Further, both (CGNPs) and pure ceftriaxone were examined for their efficacy against Escherichia coli, Staphylococcus aureus, Salmonella abony and Klebsiella pneumoniae. CGNPs showed MIC50 as 1.39, 1.6, 1.1 and 0.9 µg/mL against E. coli, S. aureus, S. abony and K. pneumoniae, respectively. Interestingly, CGNPs showed two times better efficacy when compared with pure ceftriaxone against the tested bacterial strains. Restoring the potential of unresponsive or less efficient ceftriaxone via gold nanoformulations is the most alluring concept of the whole study. Moreover, applicability of the findings from bench to bedside needs further validation.

2.
J Infect Public Health ; 14(10): 1299-1312, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1492295

ABSTRACT

BACKGROUND: Over the last two decades, humanity has observed the extraordinary anomaly caused by novel, weird coronavirus strains, such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). As the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus has made its entry into the world, it has dramatically affected life in every domain by continuously producing new variants. The vaccine development is an ongoing process, although some vaccines got marketed. The big challenge is now whether the vaccine candidates can provide long-lasting protection or prevention against mutant variants. METHODS: The information was gathered from various journals, electronic searches via Internet-based information such as PubMed, Google Scholar, Science Direct, online electronic journals, WHO landscape, world meters, WHO website, and News. RESULTS: This review will present and discuss some coronavirus disease 19 (COVID-19) related aspects including: the pathophysiology, epidemiology, mutant variants vaccine candidates, vaccine efficacy, and management strategies. Due to the high death rate, continuous spread, an inadequate workforce, lack of required therapeutics, and incomplete understanding of the viral strain, it becomes crucial to build the knowledge of its biological characteristics and make available the rapid diagnostic and vital therapeutic machinery for the combat and management of an infection. CONCLUSION: The data summarizes current research on the COVID 19 infection and therapeutic interventions, which will direct future decision-making on the effort-worthy phases of the COVID 19 and the development of critical therapeutics. The only possible solution is the vaccine development targeting against all variant strains to halt its progress; the identified theoretical and practical knowledge can eliminate the gaps to improve a better understanding of the novel coronavirus structure and its design of a vaccine. In addition, to that the long-lasting protection is another challenging objective that need to be looked into.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL